Computational Identification of miRNAs and Their Target Genes from Expressed Sequence Tags of Tea (Camellia sinensis)
نویسندگان
چکیده
MicroRNAs (miRNAs) are a newly identified class of small non-protein-coding post-transcriptional regulatory RNA in both plants and animals. The use of computational homology based search for expressed sequence tags (ESTs) with the Ambros empirical formula and other structural feature criteria filter is a suitable combination towards the discovery and isolation of conserved miRNAs from tea and other plant species whose genomes are not yet sequenced. In the present study, we blasted the database of tea (Camellia sinensis) ESTs to search for potential miRNAs, using previously known plant miRNAs. For the first time, four candidate miRNAs from four families were identified in tea. Using the newly identified miRNA sequences, a total of 30 potential target genes were identified for 11 miRNA families; 6 of these predicted target genes encode transcription factors (20%), 16 target genes appear to play roles in diverse physiological processes (53%) and 8 target genes have hypothetical or unknown functions (27%). These findings considerably broaden the scope of understanding the functions of miRNA in tea.
منابع مشابه
Computational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)
Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...
متن کاملComputational Identification of Conserved microRNAs and Their Targets in Tea (Camellia sinensis)
MicroRNAs (miRNAs) are a class of ~22 nucleotides long non coding RNA molecules which play an important role in gene regulation at the post transcriptional level. The conserved nature of miRNAs provides the basis of new miRNA identification through homology search. In an attempt to identify new conserved miRNAs in tea, previously known plant miRNAs were used for searching their homolog in a tea...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملExpressed sequence tags from organ-specific cDNA libraries of tea (Camellia sinensis) and polymorphisms and transferability of EST-SSRs across Camellia species
Tea is one of the most popular beverages in the world and the tea plant, Camellia sinensis (L.) O. Kuntze, is an important crop in many countries. To increase the amount of genomic information available for C. sinensis, we constructed seven cDNA libraries from various organs and used these to generate expressed sequence tags (ESTs). A total of 17,458 ESTs were generated and assembled into 5,262...
متن کاملIdentification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach.
Growth regulation associated with dormancy is an essential element in plant's life cycle that leads to changes in expression of large number of genes. Forward and reverse suppression subtractive hybridization (SSH) libraries were developed to identify and characterize the genes associated with bud (banjhi) dormancy in tea (Camellia sinensis (L.) O. Kuntze). Efficiency of subtraction was confirm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2010